In computer science, a scheduling is the method by which threads, processes or data flows are given access to system resources (e.g. processor time, communications bandwidth). This is usually done to load balance a system effectively or achieve a target quality of service. The need for a scheduling algorithm arises from the requirement for most modern systems to perform multitasking (execute more than one process at a time) and multiplexing (transmit multiple flows simultaneously).
The scheduler is concerned mainly with:
In practice, these goals often conflict (e.g. throughput versus latency), thus a scheduler will implement a suitable compromise. Preference is given to any one of the above mentioned concerns depending upon the user's needs and objectives.
In real-time environments, such as embedded systems for automatic control in industry (for example robotics), the scheduler also must ensure that processes can meet deadlines; this is crucial for keeping the system stable. Scheduled tasks are sent to mobile devices and managed through an administrative back end.
Contents |
Operating systems may feature up to 3 distinct types of scheduler, a long-term scheduler (also known as an admission scheduler or high-level scheduler), a mid-term or medium-term scheduler and a short-term scheduler . The names suggest the relative frequency with which these functions are performed. The Scheduler is an operating system module that selects the next jobs to be admitted into the system and the next process to run.
The long-term, or admission scheduler, decides which jobs or processes are to be admitted to the ready queue (in the Main Memory); that is, when an attempt is made to execute a program, its admission to the set of currently executing processes is either authorized or delayed by the long-term scheduler. Thus, this scheduler dictates what processes are to run on a system, and the degree of concurrency to be supported at any one time - i.e.: whether a high or low amount of processes are to be executed concurrently, and how the split between IO intensive and CPU intensive processes is to be handled. In modern operating systems, this is used to make sure that real time processes get enough CPU time to finish their tasks. Without proper real time scheduling, modern GUI interfaces would seem sluggish. The long term queue exists in the Hard Disk or the "Virtual Memory". [Stallings, 399].
Long-term scheduling is also important in large-scale systems such as batch processing systems, computer clusters, supercomputers and render farms. In these cases, special purpose job scheduler software is typically used to assist these functions, in addition to any underlying admission scheduling support in the operating system.
The medium-term scheduler temporarily removes processes from main memory and places them on secondary memory (such as a disk drive) or vice versa. This is commonly referred to as "swapping out" or "swapping in" (also incorrectly as "paging out" or "paging in"). The medium-term scheduler may decide to swap out a process which has not been active for some time, or a process which has a low priority, or a process which is page faulting frequently, or a process which is taking up a large amount of memory in order to free up main memory for other processes, swapping the process back in later when more memory is available, or when the process has been unblocked and is no longer waiting for a resource. [Stallings, 396] [Stallings, 370]
In many systems today (those that support mapping virtual address space to secondary storage other than the swap file), the medium-term scheduler may actually perform the role of the long-term scheduler, by treating binaries as "swapped out processes" upon their execution. In this way, when a segment of the binary is required it can be swapped in on demand, or "lazy loaded". [stallings, 394]
The short-term scheduler (also known as the CPU scheduler) decides which of the ready, in-memory processes are to be executed (allocated a CPU) next following a clock interrupt, an IO interrupt, an operating system call or another form of signal. Thus the short-term scheduler makes scheduling decisions much more frequently than the long-term or mid-term schedulers - a scheduling decision will at a minimum have to be made after every time slice, and these are very short. This scheduler can be preemptive, implying that it is capable of forcibly removing processes from a CPU when it decides to allocate that CPU to another process, or non-preemptive (also known as "voluntary" or "co-operative"), in which case the scheduler is unable to "force" processes off the CPU. [Stallings, 396]. In most cases short-term scheduler is written in assembler because it is a critical part of the operating system.
Another component involved in the CPU-scheduling function is the dispatcher. The dispatcher is the module that gives control of the CPU to the process selected by the short-term scheduler. This function involves the following:
The dispatcher should be as fast as possible, since it is invoked during every process switch. The time it takes for the dispatcher to stop one process and start another running is known as the dispatch latency. [Galvin, 155].
Scheduling disciplines are algorithms used for distributing resources among parties which simultaneously and asynchronously request them. Scheduling disciplines are used in routers (to handle packet traffic) as well as in operating systems (to share CPU time among both threads and processes), disk drives (I/O scheduling), printers (print spooler), most embedded systems, etc.
The main purposes of scheduling algorithms are to minimize resource starvation and to ensure fairness amongst the parties utilizing the resources. Scheduling deals with the problem of deciding which of the outstanding requests is to be allocated resources. There are many different scheduling algorithms. In this section, we introduce several of them.
In packet-switched computer networks and other statistical multiplexing, the notion of a scheduling algorithm is used as an alternative to first-come first-served queuing of data packets.
The simplest best-effort scheduling algorithms are round-robin, fair queuing (a max-min fair scheduling algorithm), proportionally fair scheduling and maximum throughput. If differentiated or guaranteed quality of service is offered, as opposed to best-effort communication, weighted fair queuing may be utilized.
In advanced packet radio wireless networks such as HSDPA (High-Speed Downlink Packet Access ) 3.5G cellular system, channel-dependent scheduling may be used to take advantage of channel state information. If the channel conditions are favourable, the throughput and system spectral efficiency may be increased. In even more advanced systems such as LTE, the scheduling is combined by channel-dependent packet-by-packet dynamic channel allocation, or by assigning OFDMA multi-carriers or other frequency-domain equalization components to the users that best can utilize them.
Also known as First Come, First Served (FCFS), is the simplest scheduling algorithm, FIFO simply queues processes in the order that they arrive in the ready queue.
Similar to Shortest Job First (SJF). With this strategy the scheduler arranges processes with the least estimated processing time remaining to be next in the queue. This requires advance knowledge or estimations about the time required for a process to complete.
The O/S assigns a fixed priority rank to every process, and the scheduler arranges the processes in the ready queue in order of their priority. Lower priority processes get interrupted by incoming higher priority processes.
The scheduler assigns a fixed time unit per process, and cycles through them.
This is used for situations in which processes are easily divided into different groups. For example, a common division is made between foreground (interactive) processes and background (batch) processes. These two types of processes have different response-time requirements and so may have different scheduling needs. it is very useful for shared memory problem
Scheduling algorithm | CPU Overhead | Throughput | Turnaround time | Response time |
---|---|---|---|---|
First In First Out | Low | Low | High | Low |
Shortest Job First | Medium | High | Medium | Medium |
Priority based scheduling | Medium | Low | High | High |
Round-robin scheduling | High | Medium | Medium | High |
Multilevel Queue scheduling | High | High | Medium | Medium |
When designing an operating system, a programmer must consider which scheduling algorithm will perform best for the use the system is going to see. There is no universal “best” scheduling algorithm, and many operating systems use extended or combinations of the scheduling algorithms above. For example, Windows NT/XP/Vista uses a Multilevel feedback queue, a combination of fixed priority preemptive scheduling, round-robin, and first in first out. In this system, processes can dynamically increase or decrease in priority depending on if it has been serviced already, or if it has been waiting extensively. Every priority level is represented by its own queue, with round-robin scheduling amongst the high priority processes and FIFO among the lower ones. In this sense, response time is short for most processes, and short but critical system processes get completed very quickly. Since processes can only use one time unit of the round robin in the highest priority queue, starvation can be a problem for longer high priority processes.
The algorithm used may be as simple as round-robin in which each process is given equal time (for instance 1 ms, usually between 1 ms and 100 ms) in a cycling list. So, process A executes for 1 ms, then process B, then process C, then back to process A.
More advanced algorithms take into account process priority, or the importance of the process. This allows some processes to use more time than other processes. The kernel always uses whatever resources it needs to ensure proper functioning of the system, and so can be said to have infinite priority. In SMP(symmetric multiprocessing) systems, processor affinity is considered to increase overall system performance, even if it may cause a process itself to run more slowly. This generally improves performance by reducing cache thrashing.
Very early MS-DOS and Microsoft Windows systems were non-multitasking, and as such did not feature a scheduler. Windows 3.1x used a non-preemptive scheduler, meaning that it did not interrupt programs. It relied on the program to end or tell the OS that it didn't need the processor so that it could move on to another process. This is usually called cooperative multitasking. Windows 95 introduced a rudimentary preemptive scheduler; however, for legacy support opted to let 16 bit applications run without preemption.[1]
Windows NT-based operating systems use a multilevel feedback queue. 32 priority levels are defined, 0 through to 31, with priorities 0 through 15 being "normal" priorities and priorities 16 through 31 being soft real-time priorities, requiring privileges to assign. 0 is reserved for the Operating System. Users can select 5 of these priorities to assign to a running application from the Task Manager application, or through thread management APIs. The kernel may change the priority level of a thread depending on its I/O and CPU usage and whether it is interactive (i.e. accepts and responds to input from humans), raising the priority of interactive and I/O bounded processes and lowering that of CPU bound processes, to increase the responsiveness of interactive applications.[2] The scheduler was modified in Windows Vista to use the cycle counter register of modern processors to keep track of exactly how many CPU cycles a thread has executed, rather than just using an interval-timer interrupt routine.[3] Vista also uses a priority scheduler for the I/O queue so that disk defragmenters and other such programs don't interfere with foreground operations.[4]
Mac OS 9 uses cooperative scheduling for threads, where one process controls multiple cooperative threads, and also provides preemptive scheduling for MP tasks. The kernel schedules MP tasks using a preemptive scheduling algorithm. All Process Manager processes run within a special MP task, called the "blue task". Those processes are scheduled cooperatively, using a round-robin scheduling algorithm; a process yields control of the processor to another process by explicitly calling a blocking function such as WaitNextEvent
. Each process has its own copy of the Thread Manager that schedules that process's threads cooperatively; a thread yields control of the processor to another thread by calling YieldToAnyThread
or YieldToThread
.[5]
Mac OS X uses a multilevel feedback queue, with four priority bands for threads - normal, system high priority, kernel mode only, and real-time.[6] Threads are scheduled preemptively; Mac OS X also supports cooperatively-scheduled threads in its implementation of the Thread Manager in Carbon.[5]
In AIX Version 4 there are three possible values for thread scheduling policy :
Threads are primarily of interest for applications that currently consist of several asynchronous processes. These applications might impose a lighter load on the system if converted to a multithreaded structure.
AIX 5 implements the following scheduling policies: FIFO, round robin, and a fair round robin. The FIFO policy has three different implementations: FIFO, FIFO2, and FIFO3. The round robin policy is named SCHED_RR in AIX, and the fair round robin is called SCHED_OTHER. This link provides additional information on AIX 5 scheduling: http://www.ibm.com/developerworks/aix/library/au-aix5_cpu/index.html#N100F6 .
In Linux 2.4, an O(n) scheduler with a multilevel feedback queue with priority levels ranging from 0-140. 0-99 are reserved for real-time tasks and 100-140 are considered nice task levels was used. For real-time tasks, the time quantum for switching processes was approximately 200 ms, and for nice tasks approximately 10 ms. The scheduler ran through the run queue of all ready processes, letting the highest priority processes go first and run through their time slices, after which they will be placed in an expired queue. When the active queue is empty the expired queue will become the active queue and vice versa.
However, some Enterprise Linux distributions such as SUSE Linux Enterprise Server replaced this scheduler with a backport of the O(1) scheduler (which was maintained by Alan Cox in his Linux 2.4-ac Kernel series) to the Linux 2.4 kernel used by the distribution.
From versions 2.6 to 2.6.22, the kernel used an O(1) scheduler developed by Ingo Molnar and many other kernel developers during the Linux 2.5 development. For many kernel in time frame, Con Kolivas developed patch sets which improved interactivity with this scheduler or even replaced it with his own schedulers.
Con Kolivas's work, most significantly his implementation of "fair scheduling" named "Rotating Staircase Deadline", inspired Ingo Molnár to develop the Completely Fair Scheduler as a replacement for the earlier O(1) scheduler, crediting Kolivas in his announcement.[7]
The Completely Fair Scheduler (CFS) uses a well-studied, classic scheduling algorithm called fair queuing originally invented for packet networks. Fair queuing had been previously applied to CPU scheduling under the name stride scheduling.
The fair queuing CFS scheduler has a scheduling complexity of O(log N), where N is the number of tasks in the runqueue. Choosing a task can be done in constant time, but reinserting a task after it has run requires O(log N) operations, because the run queue is implemented as a red-black tree.
CFS is the first implementation of a fair queuing process scheduler widely used in a general-purpose operating system.[8]
FreeBSD uses a multilevel feedback queue with priorities ranging from 0-255. 0-63 are reserved for interrupts, 64-127 for the top half of the kernel, 128-159 for real-time user threads, 160-223 for time-shared user threads, and 224-255 for idle user threads. Also, like Linux, it uses the active queue setup, but it also has an idle queue.[9]
NetBSD uses a multilevel feedback queue with priorities ranging from 0-223. 0-63 are reserved for time-shared threads (default, SCHED_OTHER policy), 64-95 for user threads which entered kernel space, 96-128 for kernel threads, 128-191 for user real-time threads (SCHED_FIFO and SCHED_RR policies), and 192-223 for software interrupts.
Solaris uses a multilevel feedback queue with priorities ranging from 0-169. 0-59 are reserved for time-shared threads, 60-99 for system threads, 100-159 for real-time threads, and 160-169 for low priority interrupts. Unlike Linux, when a process is done using its time quantum, it's given a new priority and put back in the queue.
Operating System | Preemption | Algorithm |
---|---|---|
Windows 3.1x | None | Cooperative Scheduler |
Windows 95, 98, Me | Half | Preemptive for 32-bit processes, Cooperative Scheduler for 16-bit processes |
Windows NT (including 2000, XP, Vista, 7, and Server) | Yes | Multilevel feedback queue |
Mac OS pre-9 | None | Cooperative Scheduler |
Mac OS 9 | Some | Preemptive for MP tasks, Cooperative Scheduler for processes and threads |
Mac OS X | Yes | Multilevel feedback queue |
Linux pre-2.6 | Yes | Multilevel feedback queue |
Linux 2.6-2.6.23 | Yes | O(1) scheduler |
Linux post-2.6.23 | Yes | Completely Fair Scheduler |
Solaris | Yes | Multilevel feedback queue |
NetBSD | Yes | Multilevel feedback queue |
FreeBSD | Yes | Multilevel feedback queue |
|